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Abstract

Data assimilation (DA) holds considerable potential for improving hydrologic predictions
as demonstrated in numerous research studies. However, advances in hydrologic DA
research have not been adequately or timely implemented into operational forecast
systems to improve the skill of forecasts to better inform real-world decision making.5

This is due in part to a lack of mechanisms to properly quantify the uncertainty in
observations and forecast models in real-time forecasting situations and to conduct the
merging of data and models in a way that is adequately efficient and transparent to
operational forecasters.

The need for effective DA of useful hydrologic data into the forecast process has10

become increasingly recognized in recent years. This motivated a hydrologic DA work-
shop in Delft, The Netherlands in November 2010, which focused on advancing DA
in operational hydrologic forecasting and water resources management. As an out-
come of the workshop, this paper reviews, in relevant detail, the current status of DA
applications in both hydrologic research and operational practices, and discusses the15

existing or potential hurdles and challenges in transitioning hydrologic DA research into
cost-effective operational forecasting tools, as well as the potential pathways and newly
emerging opportunities for overcoming these challenges. Several related aspects are
discussed, including (1) theoretical or mathematical considerations in DA algorithms,
(2) the estimation of different types of uncertainty, (3) new observations and their ob-20

jective use in hydrologic DA, (4) the use of DA for real-time control of water resources
systems, and (5) the development of community-based, generic DA tools for hydrologic
applications. It is recommended that cost-effective transition of hydrologic DA from re-
search to operations should be helped by developing community-based, generic mod-
elling and DA tools or frameworks, and through fostering collaborative efforts among25

hydrologic modellers, DA developers, and operational forecasters.
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1 Introduction

It is essential to properly characterize and communicate uncertainty in weather, cli-
mate, and hydrologic forecasts to be able to effectively support emergency manage-
ment and water resources decision making (National Research Council, 2006). In
hydrology, the importance of accounting for various types of uncertainty involved in5

the prediction process has been increasingly recognized in recent years, as seen in
the emerging global initiatives such as the Hydrologic Ensemble Prediction Experi-
ment (HEPEX, http://www.hepex.org/, Schaake et al., 2006). Uncertainty in hydrologic
predictions can originate from several major sources, including errors in the model
structure and model parameters, as well as model initial conditions and hydrometeo-10

rologic forcing (e.g., Ajami et al., 2007; Kavetski et al., 2006a, b; Salamon and Feyen,
2010). Effective quantification and reduction of these uncertainties is necessary to
enable the generation of forecast products with accurate and actionable guidance on
predictive uncertainty to enable risk-based decision making (e.g., Coccia and Todini,
2010; Weerts et al., 2011). The application of data assimilation (DA), which optimally15

merges information from model simulations and independent observations with appro-
priate uncertainty modelling, has proved promising in improving prediction accuracy
and quantifying uncertainty (e.g., McLaughlin, 2002; Liu and Gupta, 2007; Reichle,
2008).

Over the last couple of decades, the abundance of new hydrologic observations (in-20

situ or remotely sensed) has stimulated a great deal of research into the use of these
observations for improving hydrologic predictions via model-data infusion applications.
Many of these applications rely on assimilating traditional in-situ observations such as
discharge, soil moisture and snowpack measurements into hydrologic models to im-
prove predictions of streamflow and other hydrologic variables (e.g., Seo et al., 2003,25

2009; Vrugt et al., 2005; Weerts and El Serafy, 2006; Clark et al., 2008a; Komma
et al., 2008; Moradkhani, 2008; Thirel et al., 2010a, b). In recent years, increasing
availability of satellite observations (e.g., van Dijk and Renzullo, 2011) has generated
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unprecedented research activity into assimilating these remotely sensed retrievals of
various quantities, such as soil moisture (e.g., Pauwels et al., 2001; De Lannoy et al.,
2007; Moradkhani, 2008; Reichle et al., 2008; Yirdaw et al., 2008; Crow and Ryu, 2009;
Kumar et al., 2009; Brocca et al., 2010; Liu et al., 2011b; Montzka et al., 2011; Peters-
Lidard et al., 2011), snow water equivalent or snow cover area (e.g., Rodell and Houser,5

2004; Lee et al., 2005; Andreadis and Lettenmaier, 2006; Liston and Hiemstra, 2008;
Zaitchik et al., 2008; Durand et al., 2009; Kolberg and Gottschalk, 2010; Kuchment et
al., 2010; DeChant and Moradkhani, 2011a; De Lannoy et al., 2012), surface water
elevation (e.g., Alsdorf et al., 2007; Montanari et al., 2009; Neal et al., 2009; Giustarini
et al., 2011), terrestrial water storage (Zaitchik et al., 2008) and land surface temper-10

ature (Reichle et al., 2010), among others. These DA applications were developed for
a variety of models ranging from physically-based land surface models (LSMs) (e.g.,
Albergel et al., 2008; Nagarajan et al., 2010) to distributed hydrologic models (e.g.,
Clark et al., 2008a) and conceptual rainfall-runoff models (e.g., Seo et al., 2003, 2009;
Moradkhani et al., 2005a, b; Weerts and El Serafy, 2006), hydraulic models (e.g., Schu-15

mann et al., 2009), groundwater models (e.g., Valstar et al., 2004; Hendricks Franssen
et al., 2011), coupled surface-subsurface models (e.g., Camporese et al., 2009), bio-
geochemical models (e.g., Chen et al., 2009), and sediment transport models (e.g.,
Stroud et al., 2009). Less well-known is the application of DA in the real-time control
or operation of various types of water resources systems (e.g., Bauser et al., 2010;20

Schwanenberg et al., 2011).
In the meantime, DA algorithms are becoming increasingly sophisticated, from sim-

ple ruled-based, direct insertion methods to advanced smoothing and sequential tech-
niques, as well as the various variants of these techniques. These include, for example,
the one- ,two-, three- and four-dimensional variational algorithms (1-D-, 2-D-, 3-D, and25

4-D-VAR, e.g., Seo et al., 2003, 2009; Valstar et al., 2004), extended or ensemble
Kalman filtering (EKF or EnKF, e.g., Moradkhani et al., 2005b, Slater and Clark, 2006;
Weerts and El Serafy, 2006; Shamir et al., 2010), particle filtering (e.g., Moradkhani et
al., 2005a; Weerts and El Serafy, 2006; Matgen et al., 2010), H-infinity filters (Wang
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and Cai, 2008), hybrid EnKF or 4-D-VAR approaches (e.g., Zhang et al., 2009), and
other Bayesian approaches (e.g., Reggiani and Weerts, 2008; Todini, 2008; Reggiani
et al., 2009). While most DA applications have focused on updating hydrologic model
states (e.g., soil moisture and snow water equivalent), recent research has also exam-
ined the benefits of estimating models states and model parameters simultaneously5

(e.g., Moradkhani et al., 2005a, b; Vrugt et al., 2005; Hendricks Franssen and Kinzel-
bach, 2008; Lu et al., 2010; Leisenring and Moradkhani, 2011; Nie et al., 2011), as
well as the possibility of model structure identification and uncertainty estimation (e.g.,
Neuman, 2003; Bulygina and Gupta, 2010; Hsu et al., 2009; Parrish et al., 2012).

It is worth noting that many of the hydrologic DA studies reported in the literature fo-10

cused on advancing the theoretical development of DA techniques using, for example,
identical or fraternal twin synthetic experiments (e.g., Andreadis et al., 2007; Kumar et
al., 2009; Crow and Ryu, 2009). This is especially the case when it comes to assim-
ilating satellite data. The synthetic experiments are useful for diagnostic and design
purposes such as assessing the impact of improper characterization of model and ob-15

servation errors (e.g., Crow and Van Loon, 2006; Reichle et al., 2008) and evaluating
the potential benefits of future satellite missions (e.g., Matgen et al., 2010). Neverthe-
less, despite the overwhelming research into hydrologic DA, only a few studies (e.g.,
Seo et al., 2003, 2009; Thirel et al., 2010a, b; Weerts et al., 2010; DeChant and Morad-
khani, 2011a, b) formulated DA in an operational setting and attempted to evaluate the20

performance gain from DA in a forecast mode (e.g., as a result of better characterized
initial conditions). The application of advanced DA techniques for improving hydrologic
forecasts by operational agencies is even rarer, especially when it comes to assimilat-
ing new observations from multiple sources across a range of spatiotemporal scales.
In operational practice, the correction of model inputs, states, initial conditions and25

parameters is often conducted in a rather empirical and subjective way (Seo et al.,
2009). Generally speaking, hydrologic DA as an objective tool for reducing predictive
uncertainty is not yet technically ready for operational hydrologic forecasting and wa-
ter resources management. This is due in part to a lack of mechanisms to properly
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quantify the uncertainty in observations and forecast models in real-time forecasting
situations and to conduct the merging of data and models in a way that is adequately
efficient and transparent to operational forecasters.

Nevertheless, the need for implementing effective DA in the forecast process to
bridge the immense gap between the theory and operational practice is increasing.5

For example, Welles et al. (2007) reported that the hydrologic forecasting skill for some
river basins at the US National Weather Service (NWS) River Forecast Centers has
hardly improved over the past decade, with above flood–stage hydrologic forecasts
beyond three days having very poor skill. This highlights the potential, as well as
the need, of assimilating new observations into the operational hydrologic forecasting10

process to improve the predictive skill and extend the forecast lead time. For many
parts of the world, remotely-sensed observations (e.g., satellite images) are the only
observations available and their optimal use in hydrologic forecasting via DA needs
to be fully explored (National Research Council, 2007). In meteorological and atmo-
spheric sciences, steady improvements in numerical weather forecasting and climate15

prediction over the last couple of decades have been enabled to a large degree by
the development of community-based models and DA systems (e.g., Reichle, 2008;
Pappenberger et al., 2011). While satellite DA has not been adequately explored in
operational hydrology, the improvement of performance in operational weather fore-
cast has been attributed (at least partially) to the incorporation of satellite data whose20

quality and spatiotemporal resolutions have been steadily improving in recent years
(Rabier, 2005). The hydrologic community should learn from the experiences of the
meteorological and atmospheric communities by accelerating the transition of hydro-
logic DA research into operations to better utilize new observations and by develop-
ing community-supported, open-source modelling systems (e.g., Werner et al., 2004;25

Mcenery et al., 2005) and DA tools (e.g., van Velzen and Verlaan, 2007; Kumar et al.,
2008b; Weerts et al., 2010a).

The assimilation of various types of observations into operational hydrologic fore-
casting offers ample research opportunities and poses substantial challenges such as
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satellite retrieval algorithm development, bias correction, error estimation, downscal-
ing, model diagnosis and improvement, new DA algorithm development, efficient or
effective performance evaluation, computational efficiency enhancement, among oth-
ers. To address these challenges and identify potential opportunities in the context of
improving operational hydrologic forecasting and water resources management via DA,5

an international workshop was held in Delft, The Netherlands on 1–3 November 2010
(Weerts and Liu, 2011). The overall goal of the workshop was to develop and fos-
ter community-based efforts for collaborative research, development and synthesis of
techniques and tools for hydrologic DA, and the cost-effective transition of these tech-
niques and tools from research to operations. The workshop was attended by a mix of10

senior scientists and graduate students from a range of entities including universities,
government agencies, operational centers, and non-profit research institutions from 12
different countries representing 23 different organizations.

This paper reviews the status of DA applications in hydrology from several important
aspects and summarizes the discussion and findings from the workshop regarding the15

progresses, challenges, and opportunities in advancing DA applications in operational
forecasting. It is noted that the current paper does not seek to perform a compre-
hensive assessment of the state of the hydrologic DA research; rather, it presents
the knowledge, experience, and best judgments of the workshop participants in rele-
vant areas of applying DA to operational hydrologic forecasting and water resources20

management, and makes corresponding recommendations for advancing these appli-
cations (where possible or relevant). Since DA applications for both hydrologic models
and LSMs are relevant for operational hydrologic forecasting or water resources man-
agement across various spatiotemporal scales, advances in both research areas will
be discussed (albeit currently conceptual rainfall-runoff models are more commonly25

used in operational hydrologic forecasting than physically-based LSMs).
The paper is organized as follows. Theoretical and mathematical aspects of hydro-

logic DA applications are reviewed in Sect. 2, followed by a discussion on the mod-
elling and quantification of model and data uncertainties in DA applications in Sect. 3.
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Section 4 discusses the challenges and new opportunities related to the objective uti-
lization of new and existing sources of data (in-situ or remotely-sensed) for hydrologic
DA applications. Section 5 is devoted to the discussion of using DA for the real-time
control and operation of water resources systems, an area of research and devel-
opment less well-known to the general hydrologic community. The development and5

potential benefits of open-source and community-based tools for hydrologic DA is pre-
sented in Sect. 6. A summary of the discussions is presented in Sect. 7.

2 Theoretical aspects

Broadly speaking, operational hydrologic forecasting presents three types of DA prob-
lems. The first is the state updating problem in which data such as stage, streamflow,10

rainfall, snow water equivalent, snow depth, potential or actual evapotranspiration, soil
moisture and piezometric heads are assimilated into lumped or distributed hydrologic,
hydraulic or land surface models to update the models’ dynamic states. The second
is the parameter estimation or optimization problem, referred to often as calibration,
in which the data are used to estimate or optimize the model parameters that may15

be considered static or time-varying. The third, termed the error updating problem,
refers to using DA to revise the predictions of an error model representing the differ-
ence between the hydrologic forecasts and corresponding observations. These three
types of DA problems are not mutually exclusive since a forecasting system can utilize
any combination (see e.g., Young, 2002; Moradkhani et al., 2005b). The focus here is20

largely on the first and third types, while referring the readers to the vast literature on
calibration for the second type (e.g., Beven and Binley, 1992; Vrugt et al., 2003).

Below, we briefly review the theoretical basis of the existing DA techniques with the
aim of identifying limitations, perceived or demonstrated, for application specifically
in operational hydrologic forecasting. We then describe significant challenges from25

theoretical considerations in applying them in operational hydrologic forecasting.
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2.1 State updating

The aim of this form of DA is to render the model states (as translated through the
model dynamics) consistent with the observations. The model parameters could be
augmented to this in a form of joint estimation (e.g., Moradkhani et al., 2005b). The
most direct form of assimilating data into a model in operational hydrologic forecasting5

is the manual correction of the internal states of the model by human forecasters based
on their expert interpretation of the discrepancy between the recent model simulations
and the observed data. While such techniques are widely practiced in operational fore-
casting, their effectiveness is scantily reported (Seo et al., 2009). It is reasonable to
presume that the successful application of such manual techniques requires an expe-10

rienced forecaster along with an interpretable and preferably simple lumped hydrologic
model. The latter condition is considered necessary since it is probably impractical to
manually apply hydrologically consistent corrections to a distributed hydrologic model
or land surface model without simplifying rules. The formulation of such simplifying
rules can be extended to provide an automated system of deterministic DA. Opera-15

tional examples of such rule-based DA include the Grid2Grid rainfall runoff model op-
erational in the UK flood forecasting centre (Cole et al., 2009) and the Probability Dis-
tributed Model (PDM, Moore, 2007) operational in the Environment Agency National
Flood Forecasting System, which utilizes a flow partitioning to correct the upstream
storage volumes in a grid-based distributed hydrologic model. Other schemes (e.g.,20

Rungo et al., 1989) utilize similar concepts to assimilate data into hydraulic models.
A more common framework is to consider the state space model in Eqs. (1) and (2)

(Evensen, 1994; Liu and Gupta, 2007),

xk+1 =Mk+1(xk ,θ ,uk+1)+ηk+1 (1)

zk+1 =Hk+1(xk+1,θ )+εk+1 (2)25

where Mk+1 represents the forward model that propagates the system states x from
time tk to tk+1 in response to the model input uk+1 (with an error term ζk+1) and
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parameters θ ; Hk+1 is the observation function that relates model states and parame-
ters to observations zk+1; ηk+1 denotes the model error with mean η̄k+1 and covariance
Qk+1; and εk+1 denotes the observation error with mean ε̄k+1 and covariance Rk+1.
The predictive distribution of zk+1 (or more generally prediction n time steps ahead
zk+n) arises from the mapping of the stochastic noise terms through Eqs. (1) and (2).5

The operational usefulness of the forecast summarized by the predictive distribution is
dependent upon two main factors. The first of these is the ability of the modeller to
appropriately define the distributions of ζk+1, ηk+1 and εk+1 to characterize the vari-
ous sources of uncertainty, including errors in the model input, measurement errors in
the observations, conceptual discrepancies between observed and model states, and10

the inadequacy of the model in representing the dynamics of the system. The second
of these is the computational approximation of the predictive distribution (see relevant
discussions below).

For state updating, the state space model outlined above may be solved as a filter-
ing or smoothing problem. For problems with non-linear M and/or non-linear H, the15

solution is not trivial. A number of computational techniques are available to provide
approximate solutions. The commonly applied methodologies for solving the problem
via filtering are non-linear extensions to the Kalman Filter (KF, Kalman, 1960). Three
extensions to the KF are widely known, namely, the Extended Kalman filter (EKF, e.g.,
Georgakakos, 1986a, b; Kitanidis and Bras, 1980), Ensemble Kalman Filter (EnKF,20

Evensen, 1994) and Unscented Kalman Filter (UKF, Julier and Uhlmann, 1997). The
key difference between the nonlinear Kalman filters lies in the methods of propagating
the expected value and covariance of the state space though the non-linear operators
M and H. The EKF linearises (sometimes unrealistically) these operators based on lo-
cal derivatives, which are often difficult to compute reliably; hence, the EKF technique25

has fallen out of favour (Da Ros and Borga, 1997). The two remaining techniques
propagate the state space using a sample. In EnKF, the state space is presumed to be
multivariate Gaussian while the UKF presumes the state space is unimodal, symmetric
and unbound. Despite the more relaxed assumptions of the UKF, it has received little
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attention in the hydrologic literature to date. The EnKF technique, however, has be-
come the most frequently used DA technique in the hydrologic community, due largely
to its easy implementation and its robustness in solving most DA problems encountered
in hydrologic applications.

The size of the sample used in the EnKF or UKF may prove computationally burden-5

some in an operational environment. Another limitation of the EnKF is that its optimal
performance is restricted to multi-Gaussian distributed states and parameters. In the
operational weather forecasting community, the local ensemble transform Kalman fil-
ter (LETKF) was introduced to overcome the issue of prohibitively large dimensionality
by solving the analysis independently in a local region around every model grid point10

using only local observations (e.g., Szunyogh et al., 2008; Ott et al., 2004). Simi-
larly, Sun et al. (2009) applied grid-based localization and a Gaussian mixture model
(GMM) clustering technique to improve the performance of EnKF for states and pa-
rameters which are not multi-Gaussian distributed. Zhou et al. (2011) illustrated how
a normal score transformation for both states and parameters improved the perfor-15

mance of EnKF drastically for bimodal distributed parameter fields. It has yet to be
investigated in more detail under which conditions, and for which types of problems,
such transformations could significantly outperform the classical EnKF. Alternatively,
more sophisticated transformations could also be explored. For all these extensions,
εt+1 and ηt+1 are considered symmetric, unimodal, and unbounded zero-mean ran-20

dom variables which are independent (both in time and of each other). This means
that great care should be taken in constructing M and H if there is belief that system-
atic biases or phase errors in the data or model exist (e.g., Crow and Van Loon, 2006;
Dee, 2005). It is also noted that the common assumption that the distribution of the
states is unbounded is rarely satisfied in real-world problems; hence some mathemati-25

cal transformation is often necessary.
Another flexible (but potentially more computationally expensive) approach to solving

the above filtering problem includes the sequential Monte Carlo (SMC) methods such
as particle filtering (PF) (e.g., Arulampalam et al., 2002; Moradkhani et al., 2005a;
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Weerts and El Serafy, 2006; Noh et al., 2011; Plaza et al., 2012). Similar to the EnKF,
particle filtering evolves a sample of the state space forward using the SMC method
to approximate the predictive distribution. However, unlike the KF-based methods, PF
performs updating on the particle weights instead of the state variables, which has an
advantage of reducing numerical instability especially in physically-based or process-5

based models. In addition, PF is applicable to non-Gaussian state-space models. Ear-
lier implementation of the particle filtering relied on sequential importance sampling
(SIS) which would result in sample degeneracy (where most of the particles converge
to a single point). Synthetic studies in other fields (e.g., Liu and Chen, 1998; Fearnhead
and Clifford, 2003; Snyder et al., 2008) showed that PF often needs more particles than10

other filtering methods and the required ensemble size can increase exponentially with
the number of state variables. Although PF may outperform EnKF when the number of
particles is larger than a hundred in the case of conceptual hydrologic models (Weerts
and El Serafy, 2006), the number of particles required for physically-based distributed
hydrologic models may limit operational applications of PF. To alleviate this problem,15

sampling importance resampling (SIR) could be used (e.g., Moradkhani et al., 2005a).
In a recent effort, Dechant and Moradkhani (2011a) showed that when properly coded
and implemented PF can be computationally even more efficient than the EnKF and is
more effective and robust for joint state-parameter estimation.

The above techniques rely on approximating the evolution of the distribution of the20

unknown model states over time. A number of variational DA techniques (e.g., Li and
Navon, 2001), which can be viewed as simplifications of the KF (since they don’t prop-
agate the state covariance matrix explicitly) have been used operationally, primarily
in the numerical weather prediction community (see e.g., Fischer et al., 2005; Lorenc
and Rawlins, 2005). In hydrology, Seo et al. (2003, 2009) explored the use of varia-25

tional DA in experimental operational streamflow forecasting and demonstrated large
potential gains over manual runtime adjustments during operations. The variational
techniques can be particularly appealing when the covariance matrix is large such that
defining meaningful error covariance matrices is impractical in operational applications.
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It is important to note that all DA algorithms rely on the fundamental basis of Bayesian
theory for updating the model states or parameters. For a more detailed discussion on
the various types of hydrologic DA problems and techniques, the readers are referred
to Liu and Gupta (2007).

2.2 Error and noise updating5

The error updating problem can be thought of as assimilating the latest observation
and its corresponding prediction to inform the predictive distribution of the errors in
future model predictions and the (to-be) observed data. Operational examples include
the use of Auto-regressive Moving Average (ARMA) time series models to describe
transformed residuals in flood forecasting system (e.g., Broersen and Weerts, 2005)10

and a stochastic multiplicative correction (e.g., Lees et al., 1994). In both these cases,
predictions can be computed using linear filtering. A wide variety of alternative error
models may be found in the literature (Seo et al., 2006; Weerts et al., 2011; among
others) and the problem may be formulated in a Bayesian context (e.g., Krzysztofowicz
and Maranzano, 2004).15

To effectively utilise error updating to produce reliable forecasts (in both the proba-
bilistic and pragmatic sense) the error model must provide an appropriate description
of the difference between the observations and model predictions. Systematic or tem-
porally varying bias must be removed as much as possible. This may prove particularly
challenging if it is induced by forecasted forcing such as precipitation. Many error mod-20

els rely on temporal correlation within the residuals. Such correlations may, however,
be low at key locations such as the rising limbs of hydrographs (Todini, 2008). As
such, error modelling should consider flow dependence of the correlation structure.
Also, extreme situations such as floods may reveal previously unknown shortcomings
in the hydrologic or hydraulic models. In such situations it may be questionable if the25

error model continues to be an appropriate description of the difference between the
observations and model predictions.
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2.3 Challenges and opportunities

Besides the challenges discussed above, many other theoretical difficulties are present
and need to be effectively addressed. First of all, land surface and rainfall-runoff pro-
cesses are highly nonlinear and their mathematical models are often not continuously
differentiable. Also, the soil moisture states of a model are rarely, if ever, observed5

directly in the real world, and hence their departures from reality may only be inferred
from observations of stage or streamflow, or satellite-based microwave observations.
The river stage, for example, is a product of spatiotemporal integration of not only snow
accumulation and ablation, and rainfall-runoff processes but also various hydraulic pro-
cesses expressed through the morphology of the channel. Given these, it is necessary10

that the DA techniques for operational hydrologic forecasting be able to handle nonlin-
ear dynamics, nonlinear observation functions, and a mix of amplitude and phase er-
rors that operate over a wide range of spatiotemporal scales (Liu et al., 2011a). While
very significant progress has been reported in the literature since the mid-1970’s, it is
less than clear today as to under what conditions and to what degree the existing DA15

techniques may be able to handle the different DA problems encountered in operational
hydrologic forecasting today.

Precipitation and streamflow, arguably the two most important variables in opera-
tional streamflow forecasting are skewed and heteroscedastic, and accurate statistical
modelling of their measurement errors is still a challenge. Also, to benefit from accurate20

modelling of the measurement errors, the errors in the model dynamics and physics
will have to be modelled with comparable accuracy. It is expected, however, that there
is a practical limit to complexity of such error modelling (see more detailed discussion
on error modelling in Sect. 3). As with any optimal estimation techniques, the optimality
of the DA techniques is realized only if the observations and the models are not biased25

in the mean sense. As such, bias correction must precede or accompany DA to realize
the purported optimality (e.g., De Lannoy et al., 2007; Ryu et al., 2007). As described
above, the DA problem for state updating may involve multiple model components,
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such as those for rainfall-runoff, evapotranspiration, snow, and hydrologic or hydraulic
routing, that may operate over a wide range of spatiotemporal scales, with each model
component contributing a different degree of freedom at its own dominant scale to the
overall problem. Directly solving such a large DA problem may be impractical, and it
may be necessary to decompose it into smaller problems, but without compromising5

the quality of the solution in any significant way.
For operational forecasting, performance for extreme events is of particular impor-

tance. It is in such infrequently observed events when the mathematical DA techniques
may prove superior to purely statistical techniques which require sizable historical data.
Broadly speaking, statistical techniques may be seen as an extreme end of mathemat-10

ical DA where statistical models are used to describe the dynamics. Optimally bal-
ancing physical-dynamical and statistical modelling in DA under different hydrologic
conditions, e.g., from drought to flooding, is a complex question that requires much ad-
ditional research. Since extreme events naturally occur rarely, the ability to assess the
usefulness of DA in improving the forecasting of extreme events may be limited by the15

length of available record. This situation is exacerbated if the system being forecasted
has undergone or is undergoing significant changes such that the relationship between
the observations and the model output cannot be believed to be constant in time (or
space). Caution should therefore be applied in making too strong an assumption about
the properties of any DA scheme. Also, with such limitations, it is apparent that the20

optimal DA scheme (as judged against some criteria that the modeller can assess)
derived from the historic data may not be optimal for forecasting into the future.

3 Modelling of uncertainties

Model simulations or predictions are subject to various uncertainties and sources of
forecast errors. Uncertainties may stem from model initialization, due to incomplete25

data coverage, observation errors, or an improper DA procedure. Other sources
of uncertainty in prediction are associated with model input (i.e., forcing data) and
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imperfection of the model structure itself, due to the parameterization of physical pro-
cesses or unresolved scale issues. Even with an assumption of having a perfect model
structure, the estimates of model parameters could also be uncertain given the obser-
vational uncertainties that affect the model calibration. Therefore, the “optimality” of a
DA scheme depends critically on the reliability of error estimates for the inputs and the5

model itself, as well as proper consideration of interdependencies and interaction of
the uncertain model components and/or observations (e.g., Crow and Van Loon, 2006;
Moradkhani et al., 2006; Hong et al., 2006). This is because the weight assigned to ob-
servations in a DA scheme is computed based on estimates of the relative error in the
model and in the observations. The discussion now turns to critically examine different10

methods to estimate these errors.

3.1 Uncertainty in model inputs – the problem of precipitation

Precipitation is often viewed as the most uncertain model input (e.g., Huard and Mail-
hot, 2006; Kavetski et al., 2006a, b; Bárdossy and Das, 2008; Renard et al., 2010). This
is because precipitation typically has short correlation length scales (in both space and15

time), and the reliability of basin-average (or gridded) precipitation estimates is con-
strained by the poor spatial representativeness of most station networks (e.g., Willems,
2002; Clark and Slater, 2006; Bárdossy and Das, 2008; Villarini and Krajewski, 2008;
Volkmann et al., 2010). The uncertainty in precipitation is difficult to reduce, as al-
ternative methods for estimating precipitation, such as radar, satellite, and numerical20

weather prediction models, have errors that are at least as large as those in many oper-
ational station networks (e.g., Hossain and Huffman, 2008; Volkmann et al., 2010.), and
substantial errors in basin-average rainfall still exist in well-instrumented watersheds.
Given the impact of errors in precipitation on the model response (e.g., Bárdossy and
Das, 2008), obtaining more reliable estimates of precipitation uncertainty is critical to25

the success of DA applications.
In a DA context, uncertainty in precipitation is quantified either by stochastically

perturbing the precipitation inputs or through conditional simulation methods. The
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stochastic perturbation approach is the most common (e.g., Steiner, 1996; Crow and
Van Loon, 2006; Pauwels and De Lannoy, 2006; Weerts and El Serafy, 2006; Clark
et al., 2008a; Komma et al., 2008; Turner et al., 2008; Pan and Wood, 2009). In this
approach the size of the precipitation perturbations is typically based only on order-of-
magnitude considerations. For example, Reichle et al. (2002) assumed the standard5

deviation of precipitation errors is equal to 50 % of the precipitation total at each model
time step. However, uncertainty in precipitation estimates tends to vary both spatially
and temporally (e.g., Tian and Peters-Lidard, 2010; Sorooshian et al., 2011), and
therefore estimates of precipitation uncertainty from such order-of-magnitude based
approaches may be statistically unreliable. Conditional simulation methods have the10

potential to provide more reliable uncertainty estimates (e.g., Clark and Slater, 2006;
Götzinger and Bárdossy, 2008). For example, the regression-based ensemble spatial
interpolation methods used by Clark and Slater (2006) provide an error estimate (i.e.,
the spread of the precipitation ensemble) that is connected to the error in the regres-
sion equations. This approach – and others, such as geostatistically based conditional15

simulation techniques (Götzinger and Bárdossy, 2008) – provides statistically reliable
precipitation ensembles by explicitly linking the error in precipitation estimates to the
adequacy of the station network. While conditional simulation methods can be data-
intensive to parameterize and computationally expensive to run (McMillan et al., 2011),
their potential to provide statistically reliable uncertainty estimates suggests that the20

implementation costs may be worthwhile.

3.2 Uncertainty in the model itself

Here we define a model as a simplified representation of reality, in which the struc-
ture of the model includes the selection of model equations and the time stepping
scheme used to integrate the model equations forward in time (e.g., Clark and Kavet-25

ski, 2010). Model structure uncertainty is associated with the assumptions that act on
the development of the model conceptualization and mathematical structure. An unfor-
tunate truth in model development is that no matter how many resources are invested
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in developing a particular model, there remain conditions and situations in which the
model is unsuitable to give accurate forecast. Many of the model equations contain ad-
justable parameters that provide scope to apply the model in different regions, and/or
to improve the model predictions – for example, hydraulic conductivity can be adjusted
to represent different soil types and/or to compensate for the reality that the Richards5

model equation is often applied at a spatial scale that is much larger than the scale at
which the model equation was derived. In this context model error (or model adequacy)
is the fidelity of the model response to external forcing, and includes both errors in the
model structure (the equations and time stepping scheme) and errors in the model pa-
rameter values. Quantifying model error is an extremely difficult proposition, because10

the many different sources of uncertainty in a model interact in complex ways. The
community has adopted four main approaches to quantify model error (as discussed
below).

The first approach, and similar to the stochastic perturbation approach for precipi-
tation, is to stochastically perturb the model state variables (e.g., Reichle et al., 2002;15

Vrugt et al., 2006; Clark et al., 2008a). Again, these perturbations are based on order-
of-magnitude considerations, and may therefore be statistically unreliable.

The second approach is to use inverse methods to infer probability distributions for
each model parameter (e.g., Beven and Binley, 1992; Vrugt et al., 2003). However, in
this approach it is typically assumed that the initial condition, model structure and the20

model inputs are perfect, which can lead to model parameters being tweaked to unre-
alistic values to compensate for errors in model structure and model inputs (Thyer et
al., 2009). Moreover, the inverse problem is often poorly constrained, which can result
in parameters in one part of the model assigned unrealistic values to compensate for
unrealistic parameters in another part of the model (Beven, 2006). Such unrealistic25

inference of probability distributions of model parameters can lead to situations where
the right answers are obtained (e.g., reasonable total uncertainty estimates) for all of
the wrong reasons. In the groundwater hydrologic community, attempts have been
made to address these parameter identifiability issues via Monte Carlo type inverse
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modelling techniques, which apply 4-D-VAR techniques on a large number of stochas-
tic realizations of one or more spatially distributed parameter fields (Sahuquillo et al.,
1992; Hendricks Franssen et al., 2003.).

The third approach is to modify the states and parameters simultaneously and quan-
tify the uncertainty associated with them all within a sequential (or recursive) DA frame-5

work (e.g., Moradkhani et al., 2005b; Vrugt et al., 2005; Naevdal et al., 2003). In this
approach, the real time updating of state variables and parameter values allow the
model to more closely reproduce the observed system response given the updating
procedure implemented (i.e., linear updating in ensemble Kalman filtering vs. sequen-
tial Bayesian updating and resampling in particle filtering) at each observation time10

(Moradkhani, 2008). Various applications of such methods in streamflow forecasting,
soil moisture, snow water equivalent estimation, groundwater flow modelling and flood
inundation mapping have been reported (e.g., Hendricks Franssen et al., 2008; Matgen
et al., 2010; Leisenring and Moradkhani, 2011; Montzka et al., 2011).

The fourth and final approach to quantify model error is to use multi-model ensem-15

bles (e.g., Georgakakos et al., 2004). However, obtaining reliable uncertainty estimates
with multi-model ensembles relies entirely on chance. The selection of individual mod-
els in the multi-model ensemble is habitually rather ad hoc, with insufficient attention
given to whether the differences among the individual models represent the uncer-
tainty in simulating natural processes. Many models share a similar heritage, and it is20

common for different models to get the wrong answers for the same reasons.

3.3 Challenges and opportunities

As discussed above, our capabilities for quantifying model error show still important
deficits. This section outlines the major challenges and suggests some potential ways
in which we as a community can improve uncertainty estimates.25
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3.3.1 Disentangling different sources of uncertainty

A fundamental challenge for quantifying errors in model inputs and in the model itself
is that the different error sources are extremely difficult to disentangle (e.g., Kuczera et
al., 2006). This includes the uncertainty with respect to the values for a large number
of different parameters, possibly showing a mutual strong correlation, as is typically5

the case for LSMs. Indeed, many attempts to estimate model error effectively lump
together different sources of error. For example, the probabilistic parameter inference
methods, such as the Generalized Likelihood Uncertainty Estimation (GLUE) method-
ology, the Shuffled Complex Evolution Metropolis (SCEM) algorithm and many of the
inverse modelling methods in vadose zone and groundwater hydrology, effectively map10

all sources of model uncertainty onto the model parameters (Beven and Binley, 1992;
Vrugt et al., 2003).

There are a few promising approaches to disentangle the different sources of un-
certainty. The first is the Simultaneous Optimization and Data Assimilation (SODA)
algorithm, in which sequential DA methods are used as part of the probabilistic pa-15

rameter inference (Vrugt et al., 2005). In this case, stochastic state perturbations
and state updates are used to account for model error, reducing the extent to which
model error contaminates the inference of the model parameters (e.g., Clark and Vrugt,
2006). The second approach is the BAyesian Total Error Analysis (BATEA) method-
ology, which specifies error models for all sources of uncertainty and uses available20

data to refine the error models (Kavetski et al., 2006a, b; Kuczera et al., 2006). The
effectiveness of BATEA critically depends on the availability of informative prior in-
formation for each individual source of uncertainty (Renard et al., 2010). Given the
potential for different sources of uncertainty to compensate for each other (e.g., Crow
and Van Loon, 2006), the inference problem may be ill-posed (e.g., Kuczera et al.,25

2006). The third approach is the on-line dual state and parameter estimation within
a DA framework (e.g., Moradkhani et al., 2005b). As demonstrated in various studies
(Hendricks Franssen and Kinzelbach, 2008; Leisenring and Moradkhani, 2011), these
methods rely on sequential Bayesian estimation that seems better able to benefit from
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the temporal organization and structure of information content in the data, achieving
better conformity of the model output with observations. Moreover, such an approach
considers the interdependencies among state variables and parameters concurrently
given the highly interactive nature of these model components. We anticipate that
further developments in all of these areas will improve capabilities to produce more5

meaningful uncertainty estimates.

3.3.2 Constraining the inference problem

Another challenge – as mentioned above – is that inverse methods for parameter infer-
ence are often poorly constrained, resulting in unrealistic parameter values. The objec-
tive functions typically used for parameter inference are based on aggregate measures10

of model performance (e.g., the sum of squared differences between simulated and
observed streamflow), and the individual components of the model are rarely subject
to scientific scrutiny (Kuczera and Franks, 2002; Gupta et al., 2008; McMillan et al.,
2010). The inference of the different sources of uncertainty can therefore be improved
through more intelligent use of the available data (e.g., Gupta et al., 1998, 2008), for15

example, by separately examining amplitude and phase errors (e.g., Liu et al., 2011a).

3.3.3 Generating efficient multivariate ensembles

Although not commonly practiced, parameter uncertainty may be accounted for in DA
by generating an initial parameter ensemble. However, given the complex interrela-
tionships among model parameters, it can be a challenge to efficiently sampling from20

multivariate distributions (e.g., of multiple uncertain soil and vegetation parameters)
in hydrologic applications to generate parameter ensembles that are physically and
dynamically consistent. Similar challenges may exist for generating multivariate forc-
ing ensembles (e.g., for precipitation and temperature). Therefore, further research
into developing appropriate multivariate statistical methods for hydrologic parameters25

and forcing variables should improve our ability to address relevant uncertainties in DA
applications.
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3.3.4 Constructing reliable multi-model ensembles

The multi-model ensemble strategy is a means to address model structure uncertainty
by synthesizing outcomes from multiple models representing different parameteriza-
tions of underlying physical processes and has been demonstrated to offer better pre-
dictability (Hagedorn et al., 2005). The success of a multi-model strategy requires5

constructing a reliable model ensemble such that the differences among the individ-
ual models represent the uncertainty in simulating natural processes. This can be
accomplished by using multi-physics model toolboxes such as the Framework for Un-
derstanding Structural Errors (FUSE) approach, which provides an effective means to
construct multiple unique models by combining the different options for the model ar-10

chitecture and the flux equations (Clark et al., 2008b). For example, to develop an
empirically-based surface water model, multiple options are available for the choice of
state variables in the unsaturated and saturated zones, as well as the choice of flux
equations describing surface runoff, interflow, vertical drainage from the unsaturated
zone, base flow, and evaporation (Clark et al., 2008b). Niu et al. (2011) recently re-15

ported a similar multi-parameterization approach within the Noah land surface model
framework (Noah-MP).

One typical challenge in a multi-model ensemble approach is concerned with de-
veloping an effective strategy to optimally combine the individual models to achieve
enhanced predictive skill and uncertainty estimation. This can be addressed by sim-20

ple approaches such as equal weighting (Palmer et al., 2000) or optimal weighting
(Regonda et al., 2006). Statistics-based approaches such as linear regression (Krish-
namurti et al., 1999) and canonical variate analysis (Mason and Mimmack, 2002) can
also be employed to improve the predictive skill of multi-model ensembles. Recent in-
vestigations into combining the strengths of DA and multi-model ensembles provide an-25

other promising opportunity for simultaneously addressing model and data uncertain-
ties (e.g., Parrish et al., 2012). Further developments along these lines should help to
enhance the ability to quantify and reduce uncertainties in hydrologic DA applications.
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4 New measurements

Hydrologic forecasting can potentially benefit from assimilating relevant observations,
especially those not used in developing the models. This section discusses the appli-
cation of several types of newly emerging hydrologic observations and the challenges
and opportunities therein.5

4.1 Remote sensing data

Recent advances in remote sensing technologies have enabled a large suite of ter-
restrial observations from satellites and various remote sensing platforms. These ob-
servations can be used to derive information on rainfall, evapotranspiration, snow, soil
moisture, topography, vegetation dynamics, flooding, and the total water storage, all10

of which play an important role in the hydrologic cycle. While in-situ measurements
contain little information on the spatial variability of these important quantities, remote
sensing data are able to provide continuous spatial distributions of these variables
(albeit sometimes at a very coarse resolution) that are needed to perform distributed
hydrologic modelling and DA.15

4.1.1 Hydrologic observations from remote sensing

Remotely-sensed snow observations are among the most investigated measurements
in the hydrologic research community. The Rutgers University Global Snow Lab
(RUCL) has been generating snow cover measurements at varying temporal and spa-
tial resolutions, from 1966 to present using the snow cover dataset of the National20

Oceanic and Atmospheric Administration (NOAA). Since early 2000, the Moderate
Resolution Imaging Spectroradiometer (MODIS) instrument of the National Aeronau-
tics and Space Administration (NASA) has been providing daily snow maps at a variety
of temporal and spatial resolutions (Hall et al., 2002). Passive microwave radiometry-
based estimates of SWE and snow depth from several satellites have been generated25
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in the past 30 yr. The Advanced Microwave Scanning Radiometer (AMSR-E) sensor,
launched in 2002 on board the Aqua satellite, is the most recent addition to the pas-
sive microwave suite of instruments (Kelly, 2009). A blended snow product, known as
the AFWA NASA snow algorithm (ANSA), has also been developed by combining the
retrievals from both MODIS and AMSR-E retrievals (Foster et al., 2011). DA of re-5

mote sensing snow products has been explored in numerous studies (e.g., Rodell and
Houser, 2004; Parajka and Blöschl, 2008; Hall et al., 2010; Kuchment et al., 2010).

Remote sensing products of soil moisture are also become increasingly available
in recent years. Global soil moisture products are (or will be) available from the cur-
rent European Space Agency (ESA) Soil Moisture and Ocean Salinity mission (SMOS,10

Kerr and Levine, 2008) and the upcoming NASA Soil Moisture Active passive mission
(SMAP, Entekhabi et al., 2010). Surface soil moisture retrievals based on these sensors
have been generated (Jeu, 2003; Owe et al., 2008; Li et al., 2010) and demonstrated in
various hydrologic DA applications (e.g., Pauwels et al., 2001; Liu et al., 2011b). Other
space-borne microwave window-channel radiometers with significant soil moisture sen-15

sitivity include the Scanning Multichannel Microwave Radiometer (SMMR, 1978–1987),
the AMSR-E, the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI,
launched in 1997), and the Windsat radiometer (launched in 2003). The NASA/German
Gravity Recovery and Climate Experiment (GRACE) satellite (launched in 2002) can
map Earth’s gravity field with enough accuracy to discern month to month changes20

in the distribution of the total terrestrial water storage on Earth (Tapley et al., 2004).
Despite its coarse spatial (>150 000 km2 at mid-latitudes) and temporal (∼monthly)
resolutions, GRACE has been used to effectively measure changes in groundwater,
deep soil moisture, as well as snowpack (e.g., Su et al., 2010; Forman et al., 2012).

Hydraulic information, such as river water levels and bathymetry, can also be25

observed from space (e.g., with radar altimetry). The international Surface Wa-
ter Ocean Topography mission (SWOT) will be launched in 2019 to produce high-
resolution observations of water elevations of the earth surface (Alsdorf et al., 2007).
Information on water elevation as well as its spatial and temporal variability is critical for
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short-term hydrologic forecasting, especially during flooding situations. The potential
of assimilating space-born water level information for improved discharge and water
depth estimation has been explored in a few studies (e.g., Andreadis et al., 2007; Neal
et al., 2009; Matgen et al., 2010).

In addition, satellite and airborne remote sensing data have also been used to5

develop model inputs, such as precipitation (e.g., Tian and Peters-Lidard, 2010;
Sorooshian et al., 2011), land classification maps, digital elevation models, land sur-
face property maps and spatial model parameterizations, and to evaluate the outputs
of hydrologic models – some of which are used in operational systems (see van Dijk
and Renzullo (2011) for a review). In summary, there can be little doubt that remote10

sensing provides information relevant to hydrologic forecasting.
Operationally, satellite observations have been routinely assimilated into numerical

weather prediction models since the early 1970s (Tracton and McPherson, 1977). The
first operational remote sensing application in hydrology occurred in the 1980s (Ra-
mamoorthi, 1983). However, despite the recent increasing availability of remote sens-15

ing data, their application in operational hydrologic forecasting is still very limited.

4.1.2 Challenges and opportunities

Many experimental studies exploring the use of satellite data have been reported in
recent literature. However, most such studies either merely referred to the potential or
utility of satellite DA, or were focused on the development of approaches to assimilate20

hydrologic observations into LSMs used in numerical weather forecasting models. A
major difference between LSMs and “conventional” hydrologic models is that the for-
mer include a full description of the radiation and coupled surface water and energy
balance at diurnal time scales and – when coupled to an atmospheric model – are able
to consider the effect of atmospheric transmissivity on sensor observations. These25

features make it easier to assimilate satellite land surface temperature and microwave
brightness temperature observations. A conventional hydrologic model normally re-
quires considerable modifications or extensions to be amenable for assimilating “raw”
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satellite observations. This can include, for example, the coupling of a radiative trans-
fer and energy balance model to assimilate remotely-sensed thermal and microwave
emissions. One of the first studies attempting assimilation of satellite observations into
such a “conventional” hydrologic model was Ottlé and Vidal-Madjar (1994), who used
Land Surface Temperate (LST) and Normalized Difference Vegetation Index (NDVI)5

products derived from Advanced Very High Resolution Radiometer (AVHRR) obser-
vations to update a rainfall-runoff model. Houser et al. (1998) was one of the first to
use brightness temperature to improve soil moisture estimation in a distributed hydro-
logic model. More straightforward for hydrologic models is the assimilation of satellite
derived products. Published examples include the assimilation of satellite-derived soil10

moisture, evapotranspiration, vegetation properties and GRACE-derived terrestrial wa-
ter storage (see van Dijk and Renzullo, 2011 for references).

A big challenge in assimilating remotely-sensed hydrologic data is concerned with
the “mapping” between observed and modelled variables. The spatial and temporal
characteristics of these variables are rarely identical, and therefore aggregation or dis-15

aggregation of either (or both) is required. A specific problem arises when the remote
sensing resolution is much coarser than that of the model, a particular issue for the
assimilation of passive microwave and GRACE observations. As another example,
satellite observations of surface radiances may not help estimate hydrologic processes
that occur within small areas below satellite resolution (such as runoff from saturated20

zones). While approaches can and have been developed to deal with such issues
(e.g., Zaitchik et al., 2008) they tend to be observation specific and hence not gener-
ically available. Conceptual “mapping” can also be a problem. For example, most
remote sensing soil moisture products reflect the water status of a very shallow top
layer of the soil, whereas hydrologic models typically simulate the water storage of a25

deeper soil column. Li et al. (2012) introduced a mass conservation component into
the EnKF-based assimilation of AMSR-E soil moisture retrievals, resulting in improved
estimates of moisture contents in deep soil layers. Further developments along similar
(or other innovative) lines would be helpful.
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Another challenge is the specification of uncertainty in remote sensing observations,
which is a prerequisite for formal DA. Because of a general lack of accurate informa-
tion on the magnitude and structure of these errors, usually simplistic assumptions are
made. This is a pragmatic solution but can lead to large errors. Such errors are more
likely if retrieved variables (e.g., soil moisture) are used rather than primary observa-5

tions (e.g., brightness temperature). This pleads for the assimilation of primary data,
which however shifts the potential for inappropriate error specification to the biophysical
and observation models. A promising intermediary approach might be to produce spa-
tially and temporally explicit error estimates, either as part of the remote sensing prod-
uct retrieval process (Pathe et al., 2009) or through statistical comparison to alternative10

estimates where errors are independent (Dorigo et al., 2010; Tian and Peters-Lidard,
2010; Liu et al., 2011b).

Finally, the engineering requirements and infrastructure required for operational
satellite DA are currently probably prohibitive for many applications. For example, the
observation matrix might become very large for remote sensing data, making inver-15

sion of the observation matrix a challenge. Also, parameter optimization and state
updating can introduce considerable computational overheads, even more so when
large satellite data volumes are involved and iterative solution is required. In these
cases, the LETKF method (Ott et al., 2004) used in the meteorological community
may represent a viable candidate for dimension reduction to facilitate implementation20

in operational hydrologic forecasting. The current generation of computing infrastruc-
ture in most operational weather forecast centres can support intensive calculations
required by satellite DA. Most operational hydrologic forecast centres, however, lack
the required computing support to implement such intensive calculations. Moreover,
there is currently no computer software to support spatiotemporal grid-based DA to25

the extent that it only requires “minor” software engineering investment to achieve the
coupling of models, data, DA techniques and exploitation of high performance com-
puting solutions in the operational forecasting process. Several potential components
of a future solution have been or are being developed, through such initiatives as the
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Land Information System (Kumar et al., 2008a, b), OpenMI (www.openmi.org) and
OpenDA (www.openda.org). More discussion on these community-oriented softwares
is included in Sect. 6.

In summary, some of the main challenges to successful assimilation of remote sens-
ing data in hydrologic forecasting are related to the model extensions required, the5

mapping of observations to model variables, the specification of model and observation
errors, and – for operational implementation – near-real time access to remote sensing
data services and the design and configuration of operational DA systems. Consider-
ing these challenges, it is perhaps not surprising that there are currently few hydrologic
operational systems that have cleared all these hurdles successfully. Nonetheless,10

with the increasingly rapid progress being made to address these challenges, there
is all reason to be optimistic about the future of satellite DA in operational hydrologic
forecasting.

4.2 Other new observations

Besides the prevailing remote sensing products discussed above, other new observa-15

tions are also worth of exploration for hydrologic DA applications. Briefly discussed
below are two types of such new observations: comic ray data of soil moisture and
eddy covariance measurements of the turbulent fluxes between the land surface and
the atmosphere.

Neutron activity measured by cosmic ray devices provides an interesting new data20

source for soil moisture contents for the intermediate scale of several hectares (Zreda
et al., 2008). Cosmic ray data may hold considerable potential for hydrologic forecast-
ing applications by providing temporally continuous in-situ information on soil moisture
content from a larger part of the root zone (up to one meter under dry conditions) at
a larger scale than Time Domain Reflectometery (TDR) probes. However, to properly25

assimilate these data, various issues remain to be solved, including properly estimating
the measurement errors in the soil moisture content data under various conditions. For
example, since the neutron intensity is less dependent on soil moisture contents under
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wet conditions, the cosmic ray measurements under wet conditions are associated with
a larger uncertainty.

Eddy covariance data measure the turbulent exchange fluxes (water, energy, carbon
dioxide and others) between the land surface and the atmosphere. The assimilation of
such data opens an opportunity for improving predictions with LSMs and integrated hy-5

drologic models. An example for parameter estimation can be found in Mo et al. (2008).
However, turbulent flux measurements cannot be directly used for assimilation because
in general there is an energy balance gap in the data that needs to be corrected before
assimilation. Additional complications may arise from Non-Gaussian random errors
and their dependence on the flux magnitude or even the season, as well as issues10

related to heterogeneity within the footprint of eddy covariance measurements.

5 DA and real-time control

5.1 Background

Although not well known in the hydrologic research community, DA techniques are also
one of the important building blocks of Real-Time Control (RTC) applications. Exam-15

ples of such applications include the definition of minimum releases for reservoirs de-
pending on the reservoir’s water level and environmental objectives, and the operation
of flood detention basins based on water levels at reference locations (e.g., Castelletti
et al., 2008). In RTC applications, a dynamic system of a hydraulic or water resources
structure can be defined as a set of state variables driven by a set of inputs, often20

divided into controlled inputs (or controls) and non-controlled inputs (or disturbances).
The controlled and non-controlled inputs are analogous to model parameters and in-
puts for a hydrologic system, respectively. The overall objective of the optimal control
of such a system is to determine the controls that will cause the system states to satisfy
a set of physical constraints given the deterministic or stochastic disturbances while at25

the same time minimizing (or maximizing) some performance criterion (Kirk, 2004).
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Traditionally, the common technique for supervisory control of water resources sys-
tems is the definition of offline, reactive operating rules that optimizes the controls to
minimize cost of operations. An alternative to the offline technique is the application
of online optimization. The main representative of this approach is Model Predictive
Control (MPC), also referred to as Receding Horizon Control (RHC). MPC makes use5

of a process model of the dynamic system for predicting future trajectories of the state
vector over a finite time horizon in order to determine the optimal set of controlled vari-
ables by minimizing a cost function. Like hydrologic forecasting, MPC can benefit from
proper DA techniques (e.g., Kalman filtering) for improving estimates of the current
system states that are the basis for enhanced accuracy in forecasting future system10

states. A common DA technique jointly used with MPC is the Moving Horizon Estima-
tion (MHE) approach that looks back into the past for updating current system states
by modifying historical inputs, states or model parameters. The optimization problem
of nonlinear MPC and MHE schemes can be solved by nonlinear programming algo-
rithms such as Sequential Quadratic Programming (SQP) (e.g., Wächter and Biegler,15

2006).
A DA-based MPC framework typically adopts either a “simultaneous” or “sequen-

tial” approach. In a simultaneous approach, optimization and simulation (with state
updating) are performed simultaneously. In a sequential approach, each iteration of
the optimization consists of a sequential simulation of the system with an appropriate20

numerical integration and optimization (or state updating). In this case, the optimiza-
tion problem has a reduced variable space compared to the simultaneous approach
and leads to valid state trajectories in each iteration step of the optimization. Using
one or the other approach has certain advantages which are discussed in Diehl et
al. (2009). To make connections to common hydrologic DA applications, the simulta-25

neous approach to control optimization and state updating in MPC is equivalent to the
dual state-parameter estimation methodology presented in Moradkhani et al. (2005b),
while the sequential approach of MPC is analogous to the SODA methodology intro-
duced in Vrugt et al. (2005).
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5.2 DA applications in MPC

Although the application of MPC to water resources systems has been subject of re-
search for at least 15 yr, stakeholders have been conservative in applying the technique
for full automation of their systems. Ackermann et al. (2000) presented one of the early
examples on the control of a run-of-river hydropower plant. In this approach, a lin-5

earised one-dimensional Saint-Venant model in combination with quadratic objective
functions is used for balancing the damping of discharge peaks against the deviation
of a water level in the head barrage of the German river Moselle. The approach is
reported to be running successfully for more than 10 yr. Other applications of MPC
to run-of-river hydropower plant were investigated by Glanzmann et al. (2005), and10

more recently by Setz et al. (2008) and Sahin (2009). Most applications represent the
river section by simple pool models, where the need for sophisticated DA methods is
relatively low.

Low-land water systems with highly interconnected and highly regulated river and
canal networks have been the focus of several studies in recent years and DA-based15

MPC seems to be a promising candidate for coordinated control of these systems.
Van Overloop et al. (2008) present the application of MPC to the drainage of Dutch
polder systems using MHE for state updating. Several DA techniques were applied to
the control of a river weir in the Dutch delta of the rivers Rhine and Meuse in Schwa-
nenberg et al. (2011); due to the small extension of the modelled river system, simple20

Auto-regressive (AR) error correction models in combination with MHE were found to
outperform state updating techniques. Breckpot et al. (2010) and Blanco et al. (2010)
applied MPC in combination with MHE to a regional water system in Belgium. Bauser
et al. (2010) applied EnKF to update the model states in the real-time control of a
groundwater well field, using a groundwater flow-mass transport model and a cost25

function that was based on fuzzy decision rules and minimized with genetic algorithms.
Furthermore, MPC has been used in the short-term decision-support and supervisory
control of reservoir systems, as well as the automation of irrigation systems (e.g., van
Overloop et al., 2008; Negenborn et al., 2009; Kearney et al., 2011).
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5.3 Challenges and opportunities

Most MPC implementations above follow the simultaneous approach which reflects the
general tradition in control engineering. From the hydrologist’s point of view however,
the sequential approach may be more attractive, because it decouples simulation and
optimization. This enables the usage of the MPC model and its integration scheme5

also in a simulation mode. No comprehensive analysis is available on the performance
of both approaches applied to water resources systems. Therefore, a more elaborated
and systematic analysis of different control options in application to water systems
should be undertaken.

As in variational DA approaches, most sequential MPC schemes use reverse adjoint10

modelling for computing the gradient of an arbitrary objective function related to the
controlled input (e.g., Schwanenberg et al., 2011). Computational costs, independent
of the dimensions of the gradient vector, are in the order of a model simulation itself
and enable the operational application of the MPC. Besides its application in MPC or
MHE, adjoint modelling has been applied to more sophisticated hydrologic models,15

e.g., in Castaings et al. (2009) for a first order sensitivity analysis of an overland flow
model. We believe that this technique has much unexploited potential in operational
flood forecasting, since it provides significantly more information to a user than just
simulation results.

There are only a few application of the MHE method as a DA technique for hydro-20

logic models (Linke et al., 2011), likely due to, as for variational methods, the technical
difficulty of setting up adjoint models. Therefore, suitable technical frameworks for fa-
cilitating the implementation of hydrologic models in simulation and adjoint mode such
as found in Schwanenberg et al. (2011) should be further explored and developed.
Another line of research should cover the application of MHE to hydrologic models and25

its performance comparison with the commonly used DA techniques such as EnKF.
Additionally, the integration of uncertain information in the disturbance (inputs) and
the process model should be further explored. A relatively simple technique is Multiple
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Model Predictive Control which optimizes a unique control trajectory for a multiple num-
ber of disturbances (van Overloop et al., 2008). This however only works in case of
relatively close disturbance trajectories. A novel approach without this limitation is
the tree-based MPC, where a scenario tree is constructed for both the disturbance and
control trajectory to enable adaptive controls (Raso et al., 2010). Furthermore, new op-5

portunities for overcoming the challenges encountered in RTC applications (and those
in hydrologic forecasting) may start to emerge if the RTC and hydrologic communi-
ties work together to learn from each other’s experiences in incorporating DA in their
relevant applications.

6 Community-based efforts10

6.1 Motivation

Automated DA techniques are widely used in research and operations in areas like
meteorology and oceanography. Despite the fact that the Monte Carlo type filters are
model independent, most implementations of these DA methods in hydrologic research
are custom implementations specially designed for (and integrated with the code of) a15

particular model. The use of custom implementations has a number of disadvantages.
For example, it is very time consuming and expensive to develop and implement cus-
tomized DA methods and tools for every specific model and application. It is also
difficult to reuse these customized DA methods or tools for other models and appli-
cations than those they are originally developed or implemented for (i.e., there is an20

incompatibility or transferability issue). This, to some extent, has hindered the advance
of automated DA tools in operational hydrologic forecasting.

As mentioned earlier, the improvement in numerical weather prediction over the
last couple of decades has been enabled to a large degree by the development of
community-based, generic modeling and DA frameworks and tools, which can effec-25

tively facilitate the transition from research to operations as well as from operations to
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research. It is expected that operational hydrologic forecasting can benefit from simi-
lar community-based research and development efforts. In the hydrologic community,
such efforts are starting to emerge, albeit not as mature or established as those in the
weather forecasting world. For example, the open service-oriented infrastructure of the
Flood Early Warning System (Delft-FEWS, Werner et al., 2004) developed at Deltares5

(http://www.deltares.com) has been adopted by various operational river forecast cen-
ters around the world to develop their next generation of operational forecast systems,
including the Community Hydrologic Prediction System of the US NWS (Mcenery et al.,
2005). The need for community-based efforts had also led to the recent initiative in de-
veloping a Community Hydrologic Modelling Platform (CHyMP, Famiglietti et al., 2008)10

within the context of the Consortium of Universities for the Advancement of Hydrologic
Science, Inc. (CUAHSI).

One important feature of community modelling is that it supports, through commu-
nity contributions and feedback, the generic implementation of various models, forcing
data sources, parameter data sets, performance evaluation and other tools within a15

single framework. DA can benefit from similar community efforts by developing generic
tools for implementing various DA algorithms and different types of observational data
sets, to serve the diverse needs of different DA problems encountered in hydrologic re-
search and operational applications. It is expected that such community-based generic
DA tools, when built upon a community modelling framework, can provide an efficient20

vehicle for advancing operational hydrologic forecasting and DA.

6.2 Existing or emerging community DA efforts

One example of integrated modelling and DA systems in land surface hydrology is
the Land Information System (LIS) developed at NASA (Kumar et al., 2006, 2008a,
b). The LIS is a flexible land surface modelling and DA framework designed to in-25

tegrate satellite- and ground-based observational data products, various land surface
and hydrologic models, and advanced DA techniques to produce optimal fields of land
surface states and fluxes. It features a high performance computing infrastructure
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that provides adequate support for performing computationally intensive data integra-
tion and DA applications over user-specified regional or global domains. In atmo-
spheric sciences, a well known package is the Data Assimilation Research Testbed
(DART, http://www.image.ucar.edu/DAReS/DART/). DART is an open-source commu-
nity framework for DA developed at the National Center for Atmospheric Research5

(NCAR). It contains advanced EnKF implementations with features like inflation and
smoothing. DART has been successfully linked to some large operational models in-
cluding the Community Atmospheric Model (CAM) and the Weather Research and
Forecasting (WRF) regional prediction model (Anderson et al., 2009).

A few other generic libraries exist or have been proposed. Nerger et al. (2005)10

introduced the Parallel DA Framework (PDAF, http://pdaf.awi.de/trac/wiki) to facilitate
the implementation of ensemble DA systems in large-scale geophysical models. It of-
fers a number of efficient parallel implementation of ensemble DA algorithms includ-
ing the LETKF. In addition, a MATLAB based DA package for hydrology was pro-
posed by Drécourt et al. (2006). Recently, van Velzen and co-workers (van Velzen15

and Verlaan, 2007; van Velzen and Segers, 2010) proposed COSTA, a generic pro-
gramming environment for DA and model calibration, while El Serafy et al. (2007)
and Weerts et al. (2010a) developed a user-oriented generic toolbox for DA. Build-
ing on these two previous developments, an open source initiative for DA (OpenDA,
www.openda.org/joomla/index.php) was launched in 2010 to facilitate the generic im-20

plementation of various DA algorithms as well as calibration algorithms.

6.3 Challenges and opportunities

For community-based DA efforts, the main challenges that remain are on custom imple-
mentations of DA algorithm and the noise and error models, as well as computational
performance.25

Unlike DA, many optimization packages or toolboxes have been developed for
generic model calibration and several specifically for hydrological models; a prime
example is the Parameter Estimation Toolbox (PEST, Gallagher and Doherty, 2007).
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The reason for this unbalance between generic tools for calibration and state updating
is probably that state updating requires a high level of interaction with the numerical
model. Model calibration can often be performed via relatively simple alterations of a
model parameter file. One potential means of dealing with the high level interaction
between model and DA algorithms is via the use of the open Model Interface (openMI,5

Moore and Tindall, 2005; Gregersen et al., 2007). The openMI allows models to ex-
change data with each other on a time step by time step basis as they run, facilitating
the modelling of process interactions. This bears similarity with the exchange of model
states between model and DA algorithms, although the focus of openMI is normally not
to exchange the complete state vectors but geared towards exchange of model states10

or fluxes at specific locations.
Another challenge in developing generic DA tools lies in the definition of model noise,

which often depends on the model and requires a great deal of model specific knowl-
edge and interactions that are difficult to generalize. However, one could argue that
this generalization is not necessary, since the model noise description is part of the15

model itself so that the responsibility of providing the tools and methods for error esti-
mation lies with the model and not with the interfaces that deal with connecting model-
algorithm-observations.

Finally, although parallelism can be easily implemented to deal with the heavy model
computation needed by the DA algorithm, the optimal parallelization of the DA update20

algorithm requires a different distribution of the data over the processors (distributing
rows of a matrix) than the optimal parallelization of model computations (distributing
columns of a matrix). Optimal results are therefore to be expected with a hybrid form
of parallelization of the data (Roest and Vollebregt, 2002). Parallel computing is used
in DA systems like DART, PDAF, and OpenDA. DART allows the parallelization of the25

update algorithm which is useful when a large amount of observations needs to be
assimilated. The model steps can be performed in parallel as well in DART but the data
interaction between the model and filter is still sequential by files. PDAF is implemented
as an extension to the model code; the update algorithm is therefore parallelized using
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the same approach as the model without any exchange by files. OpenDA automatically
parallelizes the model computations and allows parallel models to be used without file
interaction; implementation of the parallelization of the update algorithms is planned for
the near future.

7 Summary and discussions5

The need for transitioning hydrologic DA research into effective operations has be-
come increasingly recognized in the wake of frequent occurrences of extreme events
in recent years and increasing availability of new observations. This paper reviews the
current status of DA applications in hydrologic research, and discusses the existing
or potential challenges and emerging opportunities in transitioning hydrologic DA re-10

search into effective and efficient operational forecasting tools. The discussion focuses
on several critical aspects related to hydrologic DA and is briefly summarized below.

Several theoretic or mathematical challenges need to be addressed before hydro-
logic DA can fully benefit operational forecasting (Sect. 2). Issues include the high
non-linearity in hydrologic processes, the high dimensionality of the state or param-15

eter vectors of hydrologic models, the skewness and heteroscedasticity in the prob-
abilistic distribution of hydrologic variables, the need for impractically large samples
in ensemble approaches, and the limited observations of extreme events. Emerging
opportunities include localized and transformation-based ensemble approaches and
decomposing of the hydrologic forecast system into smaller subcomponents for sepa-20

rate DA solutions. It is recommended that bias correction precede or accompany DA
applications.

The success of a DA application depends critically on the characterization of
uncertainties (Sect. 3). Uncertainty in precipitation can be quantified by stochasti-
cally perturbing precipitation inputs or through conditional simulation methods. De-25

termining model uncertainty can be complicated by interactions among uncertainty
sources, poorly constrained inference problems, and difficulty in constructing a reliable
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multi-model ensemble. These issues can be addressed by detangling uncertainty
sources, intelligent use of available data for inverse modelling, using integrated multi-
model and multi-parameterization frameworks, and combining the strength of DA and
multi-model ensembles.

Hydrologic forecasting can potentially benefit from integrating, via DA, newly emerg-5

ing observations such as remote sensing data (Sect. 4). Some of the difficulties (or
emerging opportunities) in effectively assimilating these data include, for example, de-
veloping proper modifications of an operational hydrologic model to assimilate “raw”
satellite data, constructing proper “mapping” relationships between remotely observed
and modelled variables, providing appropriate specification of uncertainty in remote10

sensing data, and building an efficient computing infrastructure for retrieving remote
sensing data to support satellite DA in operational forecasting.

Although less well known in the hydrologic community, DA has played an important
role in real-time control of water resources systems and hydraulic structures (Sect. 5).
DA for real-time control is often conducted within a parameter optimization framework15

and uses optimization-based techniques (rather than sophisticated DA approaches
such as EnKF) for state updating. It is recommended that the hydrologic and control
communities work together to learn from each other’s experiences to more efficiently
address issues encountered in DA applications.

Besides the computational and technical aspects already discussed, other opera-20

tional aspects like transparency and clearness of the outcomes of DA applications are
at least as important for the implementation of automated DA methods in operational
practice. For operational forecasters who are used to manual interactions with the fore-
cast system, automated DA of the black-box type may be too adventurous a step to take
in the short run. Hence, efforts are needed to speed up the operational implementation25

of automated DA, by enabling the operational control (with manual interaction) over
noise models and observations to be used in DA, and developing DA-guided systems,
where the DA results will be presented next to the current forecast to guide operational
forecasters.
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It is important to note that comprehensive and robust verification of DA results is nec-
essary to demonstrate the value of DA for operational forecasting and to build trust in
DA among operational forecasters. One important goal of DA in operational forecasting
is to provide an improved analysis of the model initial conditions to produce improved
hydrologic forecasts. However, the link between the accurate characterization of the5

initial conditions and the sensitivity of forecast skill at different lead times to this char-
acterization is still uncertain, largely due to lack of proper verification of the potential
gain from DA in a forecast context. Some have also argued that statistically based
post-processing of hydrologic forecasts may outperform DA, since the latter aims at
improving initial conditions that may not have a sufficiently long memory to improve10

forecast skill at longer lead times. All of these point to the need for robust forecast
verification (e.g., Demargne et al., 2010) that will identify and quantify the sensitivity of
forecast skill to accuracy of initial conditions and hence help quantify the value of DA
for operational hydrologic forecasting.

The various issues described above calls for the need of a community-based ap-15

proach to hydrologic DA, which aims at providing a set of generic modelling, DA, and
verification tools to serve diverse needs of the community and to facilitate effective and
efficient advances through community contribution and feedback (Sect. 6). This also
opens a promising pathway for the cost-effective transition of hydrologic DA research
into operational forecasting, while at the same time facilitating the communication of20

new hurdles encountered in operational DA back to the research community. In sum-
mary, it is recommended that cost-effective transition of hydrologic DA from research to
operations should be helped by developing community-based, generic modelling and
DA tools, and through fostering collaborative efforts among modellers, DA researchers,
and operational forecasters.25
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